Loading
filterfilterClose entries
filterfilterFilter entries

Knowledge transfer


Current

Reduction of green house gases by process innovations in the primary Industry, SP 6: Development of a methodology for cross-project and ecological potential assessment, cement industry

The transfer and networking project ReInvent aims to provide technical and organisational support for the BMBF funding measure KlimPro-Industrie.

Learn more

Completed

BetonQuali - information and qualification platform

"BetonQuali - information and qualification platform", a joint project of VDZ gGmbH and its project partners, aimed to develop and test a training method for semi-skilled and unskilled employees in the concrete industry.

Learn more

Completed

Increasing energy efficiency in the cement industry through training by means of virtual reality (VR)

The aim of IGF project 21619 is to develop a training simulator with which learners can independently solve typical process engineering tasks within a virtual reality (VR) environment, particularly in connection with ball mills.

Learn more

Cement production


Current

Investigation and optimisation of the dynamic operating characteristics of the oxyfuel-operated cement clinker burning process for CO₂ capture

The oxyfuel technology is to be investigated qualitatively using a dynamic process simulation. This will provide a basis for the control and optimization of oxyfuel systems, resulting in a faster rollout of this crucial technology for CO₂ reduction.

Learn more

Current

Process engineering investigation of the energetic-material utilisation of wastes containing carbon fibres in cement plants - EVCAZ

In the AiF project EVCAZ, the energetic and material utilisation of wastes containing carbon fibres is to be demonstrated on an industrial scale in a cement plant. The central tasks are the evaluation of the conversion success of the CF fibres, the recording of the resulting emissions and the consideration of influences on the process and the clinker quality. The findings obtained are summarised to assess health and environmental risks and to answer questions relevant to approval as a decision-making aid for cement plant operators.

Learn more

Current

Development of a method to improve clinker cooling and to increase energy efficiency in cement rotary kilns by using infrared cameras

In the research project, infrared cameras are used to record the surface temperature of the clinker bed in the clinker cooler. Together with calculated enthalpy flows, this allows control room personnel to identify the operating condition of the cooler. This is used in operational tests to optimise the heat transfer in the clinker cooler by controlling the drive system and adjusting the cooling air distribution.

Learn more

Current

CaLby2030 – Calcium Looping to capture CO2 from industrial processes by 2030

In CaLby2030, the deployment of Calcium Looping technology (CaL) using Circulating Fluidised Bed reactors (CFB) in the cement industry will be investigated, aiming at efficient CO₂-Capture without compromising clinker production or product quality. A technology scale-up will be also evaluated in a German cement plant by exploring different retrofit possibilities. Besides the cement sector, the deployment of CFB-CaL technology in other relevant sectors will also be investigated.

Learn more

Current

Optimisation of clinker-efficient cements by means of multimodal particle size distributions using energy-efficient products from separate ultra-fine grinding

Separate ultra-fine grinding of cement - Energy-efficient grinding meets optimised cement and concrete properties. Today, future-oriented cements can already be produced more sustainably and efficiently by using various components of different finenesses.

Learn more

Current

FlashPhos: The complete thermochemical recycling of sewage sludge

Elemental white phosphorus (P4) is indispensable for key industries such as in the food and pharmaceutical sectors and is therefore a strategic raw material of high relevance. In the FlashPhos project, the sustainable production of white phosphorus using sewage sludge will be demonstrated on a large scale.

Learn more

Concrete technology


Completed

New functionalities of textile-reinforced concrete through titanium dioxide modifications Subsidiary project: fine-grained concrete and cement-bound adhesive

The working plan of the Research Institute of the Cement Industry was aimed at systematic investigation of the mix formulation and workability of a nano-based cement-bound adhesive.

Learn more

Completed

ASR performance testing: extending the database to include the 60 °C concrete test with particular reference to cements with several main constituents

In the IGF (Cooperative Industrial Research) project the framework conditions for a possible performance test method for evaluating the alkali reactivity of concrete was calibrated on the basis of the requirements of the German regulations.

Learn more

Completed

Reducing the environmental impact of concrete construction through new types of cement and the concrete produced from them using starting materials that are available in adequate quantities

The aim of this research project was the laboratory and industrial production and testing of cements that contain levels of limestone above the maximum content described in DIN EN 197-1.

Learn more

Completed

Procedures for E II aggregates

VDZ and the Brandenburg Technical University Cottbus-Senftenberg (BTU) investigated whether it is possible to define an alkali sensitivity class E II-S on the basis of the 40 °C concrete test with cloud chamber storage. In addition, criteria for the rapid test procedure and the 60 °C concrete test as well as the BTU-SP rapid test were also derived.

Learn more

Completed

Determination of characteristic values based on the degree of hydration for predicting the durability of concrete

Mortar and concrete trials were used to determine characteristic parameters, such as the void filling of the cements, their hydration characteristics, the porosity of the mortars and concretes made with these cements, and the durability of the concretes.

Learn more

Completed

Boundary conditions for accurately achieving projected concrete properties in the modern 5-material system of diverse concrete constituents

Within the framework of the research project, the intention was to identify the most important influence parameters that are responsible for showing unscheduled properties such as changed consistency, signs of sedimentation, or an accelerated or decelerated strength development in certain cases of fresh concretes which are produced over prolonged periods.

Learn more

Chemistry and mineralogy


Current

Systematic application of IR spectroscopy to strengthen the circular economy in the construction industry

In this research project, IR spectroscopy in combination with mathematical tools (chemometrics) is going to be evaluated as an analytical method for the characterisation of silica based materials, primarily X-ray amorphous materials, with regard to the reliable determination of the composition of material mixtures with X-ray amorphous materials (e.g. ternary cements with calcined clay and/or recycled concrete fines). In a next step, the findings on the analytical method and evaluation routines developed for cement are going to be evaluated with regard to their transferability to siliceous aggregates for estimating its alkali sensitivity.

Learn more

Current

X-ray analysis for production control of cements with calcined clays

The subject of the IGF research project 22502 N is the application of X-ray diffraction analysis for production and quality control of calcined clays and cements produced with them, in order to accelerate the development of cements with further reduced clinker content within the framework of the decarbonisation of the cement industry.

Learn more

Current

Clinker burning with alternative fuels at low process temperatures - effects on coating formation and on the corrosion of refractory products in the cement rotary kiln as well as on the performance of cement

The replacement of primary fuels by alternative fuels is of great economic and ecological importance for the cement industry and is to be increased in the future. The fuel ashes are used as raw material in the cement clinker and influence its properties as well as the coating formation on the refractory lining in the kiln. Exact knowledge of these effects is indispensable for the further increase of the alternative fuel rate and the simultaneous optimisation of the kiln operation as well as for the maintenance of the clinker quality and the service life of the refractory lining.

Learn more

Current

Calcined Clays from mineral secondary raw materials

The aim of the research project is to investigate the suitability of previously largely unused mineral secondary raw materials from the stone and earth industry as a resource-conserving and climate-friendly main cement constituent. The use of cal-cined clays from secondary raw materials instead of conventional main cement constituents or high-quality primary clays can make an important contribution to the production of climate-friendly and resource-efficient cements.

Learn more

Completed

Use of X-ray fluorescence analysis to determine trace element contents in cements

The aim of the research project was to develop a procedure for analysing trace elements on cements using X-ray fluorescence analysis. In addition, precision data and application limits were to be determined, which are essential in order to be able to classify the results.

Learn more

Completed

Resource-efficient use of sulphate-containing process dusts for sulphate optimisation using isothermal heat flow calorimetry

The research project analysed whether sulphate-rich process dusts can be used to optimise the sulphate content of cements, thereby saving anhydrite/gypsum and, in particular, improving the early strength of cements with several main constituents. Furthermore, it was to be determined whether isothermal heat flow calorimetry can be used as a fast and cost-effective investigation method for this purpose.

Learn more

Environmental protection


Current

CaLby2030 – Calcium Looping to capture CO2 from industrial processes by 2030

In CaLby2030, the deployment of Calcium Looping technology (CaL) using Circulating Fluidised Bed reactors (CFB) in the cement industry will be investigated, aiming at efficient CO₂-Capture without compromising clinker production or product quality. A technology scale-up will be also evaluated in a German cement plant by exploring different retrofit possibilities. Besides the cement sector, the deployment of CFB-CaL technology in other relevant sectors will also be investigated.

Learn more

Narrow down your search here.

Areas

  • Publications
  • Research projects
  • Training
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading