Loading
filterfilterClose entries
filterfilterFilter entries

Research projects on the subject Chemistry and mineralogy


Current

Effects of pre-hydration on the performance of cements and the influence of different clinker properties

The research project has two objectives. The first is to investigate whether certain chemical / mineralogical properties can make clinker more robust against pre-hydration effects. Secondly, it will be investigated which measures can be taken to counteract possible negative effects, in particular by adjusting the sulphate carrier composition.

Learn more

Current

Performance of ternary cements with Portland cement clinker, granulated blast furnace slag and calcined clay as the main constituents

The aim of the research project is the detailed investigation of the performance, durability and hydration behaviour of ternary cements with blastfurnace slag and calcined clay as main constituents (KSQ cements).

Learn more

Current

Influences of two-stage mixing on the hydration behaviour of Portland-composite cements and composite cements as well as on the concrete performance

The research project was investigating the extent to which more intensive mixing and further cement constituents besides clinker increase the mixing energy input and can increase the early cement hydration and thus the strength development of clinker-efficient cements.

Learn more

Current

Calcined Clays from mineral secondary raw materials

The aim of the research project is to investigate the suitability of previously largely unused mineral secondary raw materials from the stone and earth industry as a resource-conserving and climate-friendly main cement constituent. The use of cal-cined clays from secondary raw materials instead of conventional main cement constituents or high-quality primary clays can make an important contribution to the production of climate-friendly and resource-efficient cements.

Learn more

Current

Systematic application of IR spectroscopy to strengthen the circular economy in the construction industry

In this research project, IR spectroscopy in combination with mathematical tools (chemometrics) is going to be evaluated as an analytical method for the characterisation of silica based materials, primarily X-ray amorphous materials, with regard to the reliable determination of the composition of material mixtures with X-ray amorphous materials (e.g. ternary cements with calcined clay and/or recycled concrete fines). In a next step, the findings on the analytical method and evaluation routines developed for cement are going to be evaluated with regard to their transferability to siliceous aggregates for estimating its alkali sensitivity.

Learn more

Current

Interactions of accelerating admixtures and clinker-efficient cements with several main constituents to improve the early compressive strength of concrete

The acceptance of resource-efficient cements with significantly reduced specific CO₂ emissions is still too low in construction practice. The main reason for this is that early strength is not high enough for economical production processes and also competitive construction with concrete. Accelerating admixtures can improve the early strength of concrete. The research project investigates interactions between concrete admixtures that accelerate the strength development and cements with several main constituents.

Learn more

Current

Effects of pre-hydration on the performance of cements and the influence of different clinker properties

The research project has two objectives. The first is to investigate whether certain chemical / mineralogical properties can make clinker more robust against pre-hydration effects. Secondly, it will be investigated which measures can be taken to counteract possible negative effects, in particular by adjusting the sulphate carrier composition.

Learn more

Current

X-ray analysis for production control of cements with calcined clays

The subject of the IGF research project 22502 N is the application of X-ray diffraction analysis for production and quality control of calcined clays and cements produced with them, in order to accelerate the development of cements with further reduced clinker content within the framework of the decarbonisation of the cement industry.

Learn more

Narrow down your search here.

Areas

  • Publications
  • Research projects
  • Training
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading